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ABSTRACT 

To realize design concepts, predict dynamic behavior and develop appropriate control 
strategies for high performance operation of a solar-sail spacecraft, we developed a simple 
analytical model that represents dynamic behavior of spacecraft with various sizes. Since motion 
of the vehicle is dominated by retractable booms that support the structure, our study 
concentrates on developing and validating a dynamic model of a long retractable boom. 
Extensive tests with various configurations were conducted for the 30 Meter, light-weight, 
retractable, lattice boom at NASA MSFC that is structurally and dynamically similar to those of a 
solar-sail spacecraft currently under construction. Experimental data were then compared with 
the corresponding response of the analytical model. Though mixed results were obtained, the 
analytical model emulates several key characteristics of the boom. The paper concludes with a 
detailed discussion of issues observed during the study. 

INTRODUCTION 

Solar sails offer a safe, cost effective and propellant free mode of space transportation. 
These spacecraft are propelled by momentum gained when photons are absorbed and/or 
reflected from its large membranes. Ideally these membranes should be perfectly flat, to 
maximize thrust magnitude and optimize thrust vector control. For square solar sails, long light- 
weight coilable booms are needed to support the tensioned membranes in the same way long 
thin rods support a kite's fabric. Due to their light weight and long length, these booms will be 
highly flexible and lightly damped. When disturbed, they will respond with large amplitude slowly 
decaying vibration. This will lead to a loss of membrane flatness and deterioration of overall 
performance of the space vehicle. To realize the design concepts, predict dynamic behavior of 
the system and develop appropriate control strategies for high performance operation of the 
vehicle, accurate analytical models and model parameters are required. Therefore, the primary 
question we ask in this study is: can the dynamic behavior of an extremely large, typically 100 
Meter by 100 Meter, square, solar-sail spacecraft be predicted by a standard linear scalable 
mathematical model? Since we expect vehicle motion will be dominated by dynamics of its 
booms, we limit our study to boom dynamics only. 

spacecraft for several reasons. Some of these reasons are: (1) their high strength-to-weight and 
length-to-diameter ratios, and (2) their ability to collapse to a small length/volume and 
subsequently deploy to much larger lengthslvolumes. These durable, lightweight, open lattice 
structures can be retracted (by elastically coiling longerons to assume a flattened, helical 
configuration) into storage volumes with lengths of about 2% of deployed length. Once retracted 
they are easily stored/transported. Furthermore, availability of an ultra-lightweight space 
deployable 30 Meter boom at MSFC with structural properties of booms that can be used for 
solar-sail spacecraft enables us to perform this study. 

It is known that lattice booms are well suited to providing structural strength to a solar-sail 
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Mathematical models representing its static and dynamic characteristic behavior are 
derived and validated using experimental data from a 30 Meter long ABLE boom. The boom will 
operate in a zero gravity environment but tests will be performed in a one-g environment. 
Accordingly, the analytical models explicitly account for gravity in a manner that allows us to 
validate the model in a one-g environment and subsequently derive a zero-g model. Though 
model validation results were mixed, our results generally suggest that simple analytical models 
can account for the static and dynamic behavior of ABLE Lattice booms at long lengths. 

The paper is organized as follows. In the specifications of the boom section, the boom 
description, dimensions and properties are discussed. This is followed by the experimental setup 
section which describes tests and test configuration. The beam parameters section provides 
parameters required to complete the analytical models. Due to the significance of bending 
stiffness and a variety of issues associated with it, the bending stiffness determination section is 
provided next. This is followed by the mathematical models section that contains models for 
bending and torsion along with all necessary assumptions. In the data analysis section, analysis 
obtained from comparing the response of models with experimental data is given. The paper is 
concluded with a discussion section and some remarks. 

EXPERIMENTAL SETUP 

The boom that was tested is a canister deployed boom capable of fully automatic 
deployment/retraction. Canister deployed booms are motor-driven, and the boom is extruded 
from an internally-threaded canister shell. A beneficial feature of these booms is the fact that 
near full stiffness and strength is achieved throughout the deployment phase”’l. The tested 
Mast/Canister system is a canister deployed boom that has been flown aboard the challenger 
space shuttle and sutsequently deployed in space in 1984. Afterwards, it was modified for 
CASES ground tests . 

As in Figure 1, the free end of the beam has a stiffener section (tip-bars) and the tip ring 
was removed for bending tests. However, the Tip-Ring was reinstalled to apply torsional forces 
for torsional tests. At the center of the tip-ring assembly is a bearing that prevents transverse 
motion in x and y directions but permits z axis rotary motion. The resulting arrangement for 
torsional tests is illustrated in Figure 1. 

Figure 1. Tip Image With Tip Ring Figure 2. Longeron Clamps 

In addition to the above modifications, the mast was further modified for this study by 
retrofitting a longeron clamp to impose a clamped condition at the canister/mast interface as 
shown in Figure 2. 

OVERVIEW 

Experiments were carried out to obtain static bending stiffness data, static torsional 
stiffness data, and bending/torsional modal data at mast lengths L=lO (M), L=22.5(M), and 
L=30(M), with constant loading cable tensions (see Figure 3) at Tc = 0 Ib, 5 Ib, and10 (Ib). From 



this test data, one can identify natural frequencies, mode shapes, and damping ratios that 
represent the dynamic behavior of the system. To minimize gravity effects, the boom was 
supported such that its longitudinal (z) axis is vertical at rest. 

BOUNDARY CONDITIONS 

As shown in Figure 2, clamps were installed between the motorized canister that holds the 
retractable boom and each longeron to force boundary conditions of the mast to be close to those 
of the booms of a typical solar-sail spacecraft. Accordingly, clamped-free boundary conditions, 
little-or-no tip mass and axial tension due to cables attached at approximately 45' to the 
longtitidinal axis at the interface between the stiffener section and the mast (see Figure 3) of a 
solar-sail mast were approximated. 

Cable 
Tension 

Figure 3. Axial Loading Configuration 

ATTACHED INSTRUMENTS 

Displacement 

In all cases, displacement was measured at (4 or 8 )  measurement points distributed 
along the longeron to which the transverse bending forces were applied. Displacement sensors 
included Spring Return DC Position Sensors, also known as Linear Variable Differential 
Transformer (LVDT) Displacement Transducers and Ultrasonic Displacement sensors also known 
as UDI sensors. Displacement sensors were set up to measure beam displacement in the y-axis 
direction. For torsion tests, a pair of LVDT sensors measured angular rotation of the tip-ring. 

Acceleration 

Similarly, bi-axial accelerometers were used to measure x and y axis accelerations in 
response to y-axis forces or z-axis torques applied at the beam tip. Accordingly, these 
accelerometers were attached at roughly the same sensor locations as the displacement sensors. 
In addition, a tri-axial accelerometer, was installed on the longitudinal axis at the interface 
between the mast and stiffener section. This accelerometer is oriented to measure accelerations 
in the x, y and z axis direction at its location. 



BENDING TESTS 

Static Linear Displacement Tests 

Static Stiffness data was obtained by recording y-axis displacement at multiple points on 
the mast as a constant transverse force, with multiple steps of varying magnitude, was applied to 
the beam tip in the y-axis direction. Direction of the force was reversed and the test was 
repeated. In each case input/output data was recorded. Output data was linear displacement in 
the y-axis direction at multiple points (including the tip) along the beam. This test was performed 
at 10(M), 22.5(M) and 30(M) deployment lengths without any externally induced axial loads. At 
the 22.5(M) deployment length, the test was repeated when axial loads were applied to the beam 
via two “loading cables” each of which had 5(lb) or 10(lb) tension T, Data from these tests were 
used to estimate bending stiffness El. 

Cut- Wire Tests 

These tests are designed to capture dynamic response of the beam to an initial, linear, 
static displacement. This is achieved by attaching a wire to the beam tip, and pulling the wire in 
the y axis direction to induce a displacement at the beam tip. This displacement was preserved 
by maintaining a constant tension in the wire. Consequently, the beam has a fixed initial 
deflection. After the beam stabilized, the wire was suddenly cut causing the beam to vibrate. 
Time history of cable tension and beam response (displacement and acceleration) at sensor 
points was recorded. 

lmpact Tests 

stiffener section. Response (y-axis acceleration) of the beam at the measurement points were 
recorded and used for modal analysis. Several data sets were collected. 

TORSION TESTS 

Unlike bending tests, the tip ring was added to the free end of the stiffener section to 
facilitate application of torsional loads and measurement of angular response. As described 
earlier, the tip ring constrained the beam tip to pure z-axis rotation (see Figure 2). 

Static Angular Displacement Tests 

as a constant z-axis torque, with multiple steps of varying magnitude, was applied to the tip ring. 
Torque direction was reversed and the test was repeated. In each case input/output data was 
recorded. Outputhesponse data was z-axis angular displacement at the beam tip. This test was 
performed at the 30(M) deployment length without any externally induced axial loads. Data from 
these tests was used to estimate torsional stiffness GJ. 

Cut- Wire Tests 

A tuned impact hammer was used to strike the beam in the y-axis direction at the 

Static stiffness data was obtained by recording z-axis angular displacement at the tip-ring 

Similar to the bending test case, this is achieved by attaching a wire to the tip-ring, and 
pulling the wire to induce a z-axis torque at the beam tip. This displacement was maintained by 
keeping a constant tension in the wire. Consequently, the beam had a fixed initial angular 
deflection. Once the beam stabilized, the wire was suddenly cut which caused angular beam 
vibrations. Time history data of the cable tension and beam response (displacement and 
acceleration) at sensor points were recorded. 

lmpact Tests 

A tuned impact hammer was used to strike the beam at the stiffener section in a direction 
that induces a z-axis torque. Response (z-axis angular acceleration) of the beam was measured 
and used for modal analysis. Since the Bi-axial accelerometers are offset from the neutral (z) 
axis, they measure radial and tangential acceleration along the beam. Consequently, they were 
used to estimate the z axis (angular) acceleration induced by the impact hammer. 



BEAM PARAMETERS 

Mast (beam excluding stiffener section 84 tip ring) 
Axial Length 
Bending Stiffness N 
Torsional Stiff ness GJ 

Stiffener Section (between mast and tip ting): Axial Length 

Tip Ring: Axial Length 

In this section, we state parameters required to complete mathematical models provided 
in the next section. These parameters include mass-per-unit-length for the beam and tip-ring, 
buckling load, and maximum permissible tension in cables for applying axial load. For easy 
reference, these parameters are tabulated in Table 1. 

Table 1. Summary of Parameters 

1 181.5 (in) 
19.87~1 O6 (Ib.in2) 
4.36~10~ (Ib.in2) 
15.5 (in) 

710 (in) 

BENDING STIFFNESS, El, DETERMINATION 

We assume the boom has a constant stiffness, E/, that is independent of beam length. 
Such a constant bending stiffness was provided by ABLE and is shown in Table 1. In this section, 
experimental verification of the constant bending stiffness is attempted. Verification of constant 
stiffness, El, is done by analytically computing El values at different deployed lengths from sets of 
static test data. Each test data set represents the transverse deflection profile of the boom for a 
specific transverse tip force. Transverse force was gradually increased and decreased in steps to 
collect the entire data set. There were a total of 18-42 good data sets depending on the 
configuration. Unlike mathematical models, the experimental data can be significantly influenced 
by gravity and it prevents a computation of the correct El value of long (or heavy) structures. Thus, 
we developed a formula to accommodate this. Throughout this paper, we make the following 
standing assumptions. 

Assumption 1 : 

1. Boom has a uniform mass stiffness, i.e. m(s)=m and N(s)=€/ respectively. 

2. Perfectly straight beam. 

3. External forces and moments do not induce any torsional effects. 

The standard formula to compute El under zero gravity assumption is: 

It is expected that experimental data collected from static tests will be distorted by gravity. 
This gravity influenced test data will certainly affect EZ values estimated using eq. (1). Thus, we 
developed a new formula that accounts for the case where axial and gravity loads exist. 
Assuming that the axial load considered here is due to a constant vertical force, T(L), acting at 
the beam tip pointing in the positive s-direction and the beam profile may be approximated by a 
3rd order polynomial 

2 3 y(s )  = co + CIS + c,s + c3s 

of the spatial coordinate s E [0, L ] ,  ck , k = 0,1,2,3 are known coefficients and y(s )  represents 
the boom profile represented by experimental data, the standard stiffness formula is modified to5, 



At each length, 18-45 El values were computed depending on numbers of available sets of data. 
The following table shows average values for each length. 

COMPARISON OF El VALUES 

Boom Length (Meters) E/:) (Newton.Meter) 

L=l 0 45428x1 O4 

L=22.5 7.9643~1 O4 

L=30 1.2363~10’ 

Table 2. Average Bending Stiffness Values (No-Axial Load Applied) 

,E{‘’ (Newton.Meter) 

3.5262~1 O4 

5.8976~1 O4 

1.0239~10’ 

Note that if T(L)=w(s,t)=O, the expression above corresponds to “case 2” of the Rakoczy model’. 

We used admissible functions in our analysis because of difficulties computing the 
analytical mode shape functions (bj (s) . The admissible functions are the mode shape functions 
of the classical Euler-Bernoulli Beam, Le: 

u j ( s )  = clj sin(8,s)+cZj cos(fljs) + c , ~  sinh(Pjs) +c4j cosh(Pjs) (5) 

where P j ,  and cIj, c , ~ ,  c3j , c , ~ ,  j = 1,2,3, ... are computed from boundary conditions. 

TORSION MODEL WITH TIP MASS 

Assumption 2: Torsional stiffness of the beam is uniform (i.e GJ(s)=GJ with known GJ). 



A mathematical model depicting the beam in torsion is standard and is provided below. 
Let M&,t) denote a distributed external torque, B(s,t)  angular rotation, G shear modulus, J(s) a 
geometric property, GJ torsional stiffness and /(s) mass polar moment of inertia per unit length of 
the beam. The differential equation of motion is6 

while the fh mode shape function (bj is, 

(bj = c j  sin(pjs). 

DATA ANALYSIS 

(7) 

The data analysis consists of using the mathematical model to predict (1) natural frequencies ana 
(2) mode shapes of the first three modes. The analysis is completed by comparing these 
predicted natural frequencies and mode shapes with those measured from experimental data for 
a corresponding configuration (deployment length and axial load). This analysis is repeated for 
every test configuration. 

DATA ANALYSIS: BENDING MOTION 

the modal parameters, the corresponding natural frequencies predicted by the mathematical 
model (Table 3), and the damping ratios from the impact tests (Table 4) are tabulated below. 

From the impulse response due to the transverse forces induced by the impact hammer, 

Table 3. Experimentally ObtainedlModel Predicted Natural Frequencies 



Figures 4-10 compares model predicted mode shape and mode shape reconstructed from 
experimental data. Our analysis is limited to the first three modes because they account for most 
of the beams vibration motion. Note that sometimes, no reliable data was available to construct 
the mode shape of the third mode. These figures show that the predictions are reasonably 
accurate. 
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Figure 4.10 Meter Test with 0 Ib cable tension 

Figure 5.22.5 Meter Test with 0 Ib cable tension 

Figure 6.22.5 Meter Test with 5 Ib cable tension 

Figure 7.22.5 Meter Test with 10 Ib cable tension 
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Figure 8.30 Meter Test with 0 Ib cable tension 
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Figure 9.30 Meter Test with 5 Ib cable tension 
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Figure 10.30 Meter Test with 10 Ib cable tension 

We pay particular attention to Figures 11 and 12 which depict the changes of mode 
shapes with regard to different tension load being applied. As expected, the mode shapes of the 
mathematical models show resilient behavior with respect to the changes of tension load. 
However, notable changes are shown in mode shapes constructed from the experimental data. 
Further discussion will be given in the next section. 

Figure 11.22.5 Meter Test with 0,5,10 Ib cable tension 
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4.2 " ' 3 8 " 

Length L (Meters) 

30 

Cable Tension Tc (lb) fl (Hz) 1; (Hz) f3 (Hz) 
0 1.6934 5.0803 8.4672 

Unfortunately, the corresponding experimental torsional natural frequencies and mode 
shapes are not available due to the inability to obtain reliable torsional data. This issue will be 
discussed further in the next section. Consequently, the natural frequencies of the mathematical 
model in Table 6, and the corresponding mode shapes (not shown) cannot be validated. 

Length L (Meters) Cable Tension Tc (Ib) 

30 0 

Despite the failure to obtain mode shape functions from the torsion data collected, FRF 
data obtained from z-axis torque (input) at the free (for rotation) end plus z-axis acceleration 
(output at the free end) was adequate for some crude analysis. FRF data from the modal 
analysis was compared with FRF data from the mathematical model. These two FRFs are 
depicted in Figure 12. A crude estimate of the first three natural frequencies was made as 
follows. The frequencies at which the first three magnitude peaks (accompanied by 180' (deg) 
Phase shifts) occur was determined visually. These crude natural frequency estimates are 
provided in Table 7. 

fl (Hz) 1; (Hz) f (Hz) 
1.91 5.64 9.38 

FRF.: Tlp-AcoMp-Force: L - 30 M. Tlp-Load - 0 Lb 

. . . . .  

* 
Frequency (Hz) 

. . . .  . . . .  . . . .  . . . .  

lo-' 1 0" 7 0' 
Frequency (Hz) 

Figure 13. Torsion: Experimental and Mathematical Model FRFs 



DISCUSSION 

In this section, we discuss some of the issues raised during the data analysis including 
reliability of the data due to limitations of the experimental setup. 

EXPERIMENTAL SETUP 

1. The 30 meter boom under study is not perfectly straight and has a slight "bow". This causes 
an inevitable coupling between bending and torsion motions. Consequently the "bow" in our 
boom guarantees that Torsion and Bending modes will always be coupled! However, the 
study assumes the boom is perfectly straight and bending and torsion motions are completely 
decoupled. The mathematical models we developed are based on this assumption. 

2. As described earlier, the boom has a stiffener section (see Figure 2) at the end. Since we 
assume the boom is long and slender, we expect the effect of the stiffener section becomes 
insignificant as the length of the boom increases. 

BENDING STIFFNESS VALUE 

consideration), we assumed the boom has a uniform stiffness. In fact, the entire analysis 
performed here is based on a mathematical model with the constant stiffness value provided by 
ABLE. Initially, attempts were made to verify this central assumption from static test data sets 
obtained from experiments. As discussed in the bending stiffness determination section, a 
conclusive verification was not achieved. Some of the observations made from our analysis of 
the experimental data are: 

1. The standard formula in eq. (1) was problematic when it utilized static test data that was 
significantly influenced by gravity. Consequently, the €1 values computed with this formula 
increased as the length increases as shown in Table 2. Since the formula in eq. (1) assumes 
zero gravity condition and the gravity effects on the data is increasing as the length of the 
boom increases, the constant/accurate N cannot be obtained if such gravity influences on 
the apparent stiffness is large. 

2. A new formula was derived to mathematically remove gravity influences from the static test 
data. As shown in Table 2, the results show that the constant/accurate N was still not 
attainable from the static test data even after removing gravity effects. Therefore, we failed to 
experimentally verify the primary assumption we made based on ABLE'S literature. 

Based on the literature provided by ABLE (manufacturer of the boom under 

MODE SHAPE FUNCTIONS 

shapes reconstructed from experimental data, we observed the following. 
Comparing mode shape functions predicted by the mathematical model against mode 

1. 

2. 

3. 

4. 

5. 

Mathematically predicted mode shape functions generally agree with experimental shapes. 

Modal analysis of experimental data often failed to identify higher modes. As a result, some 
test configurations lack a third mode for data analysis. 

The modal analysis also had difficulty identifying any torsional modes from experimental 
data.. As a result, data analysis for torsional motion was done only with the mathematical 
model and was therefore limited. 

It is well known that natural frequency should decrease with an increase in compressive load. 
This trend was observed in our mathematical model as shown in Table 4. However, the 
experimental data generally showed the opposite trend. Such an unreasonable phenomena 
may indicate inaccuracy of the test data. 

The difference between natural frequencies predicted by the mathematical model and natural 
frequencies measured from experimental data generally reduced as the boom length 
increased. This is an expected outcome because the beam should become a slender beam 
(as assumed in the mathematical model) as it's length increases. Also, the effects of the 
unmodeled stiffener section should become less significant as length increases. 



EFFECTS OF AXIAL LOADS ON MODE SHAPE FUNCTIONS 

Mode shapes of a clamped free beam are a function of axial load, but the change in mode shape 
produced by a large change in axial load is generally very small2. Consequently, we expected the 
mode shapes predicted by our mathematical model and mode shapes estimated from 
experimental data would both show insignificant changes to small (compared to buckling load) 
axial load changes. As expected, mode shapes predicted by the mathematical models hardly 
changed with axial load. However, experimental mode shapes changed significantly for relatively 
small axial loads. Unfortunately, a thorough investigation of the cause(s) of this discrepancy will 
require additional experiments and mathematical analysis that are beyond the scope of our study. 
In the absence of this, two likely sources of this anomaly are suggested below. 

The beam contains a significant bow (global deformation) that is visible to the naked eye when 
the boom is in an unloaded state. Consequently, the bending and torsional vibration modes will 
always be coupled6. Therefore, the'vibration modes determined from transverse vibration data 
are actually a combination of bending modes coupled with angular motion. As a result, the 
apparent change in the experimental transverse mode shapes with axial tension may be due to 
coupling effects. On the other hand, the mathematical model assumes a perfectly straight beam 
and is therefore free of coupling effects. 

At short lengths a coilable boom is generally a very predictable and readilly modelled linear 
structure7. However, ultra light weight booms with long lengths are particularly susceptible to 
stiff ness and therefore strength reduction due to local longeron and global mast 

However, our mathematical mode shape functions were derived assuming the beam is 
perfectly straight, and its bending stiffness is uniform and constant. Therefore, the existence of a 
significant bow invalidates this assumption. In fact, our inability to determine a constant and 
uniform stiffness Elvalue from static test data may actually be due to the effects of IocaVglobal 
stiffness changes caused by an imperfectly straight boom. 

NATURAL FREQUENCIES 

1. As stated earlier, the boom was assumed to be uniform for the bending model. However, we 
know the boom was much stiffer and much heavier at the last two bays. From simple math 
models of the first frequency of a beam with a tip mass, we know that the mass of the tip 
mass has a much more significant effect on the first mode frequency than the mass of the 
entire boom2. This may explain the large discrepancy between the experimental and math 
model first mode frequency. 

2. Pure Torsion Mode shapes and frequencies could not be determined from experimental data 
because of the coupling between the Torsion and Bending Modes. 

CONCLUDING REMARKS 

The question we asked in this study was: can the dynamic behavior of an extremely large 
solar-sail spacecraft be predicted by a standard scalable mathematical model? We attempted to 
answer the question by validating the mathematical model against data collected from 
experiments conducted on a 30 (Meter) boom in various lengths. As we discussed above, the 
results are not definitive and conclusive. However, evidence generally suggests that simple 
linear-time invariant mathematical models can predict dynamic behavior of a long boom that is 
similar to the one used in this study. It seems that most of the mismatches are due to inability of 
the experimental environment to satisfy some of the assumptions made in developing theoretical 
models. Although some of these assumptions are expected to be satisfied more closely in real 
flight conditions (zero gravity, much longer booms, etc.), one of the most critical questions to be 
asked may be whether a boom satisfies the perfectly straight beam assumption. 

Depending on degree of waviness, one may have to drop this assumption and develop 
complicated models that represent coupling between bending and torsional motion. In any case, 



some form of robust control to overcome the difference between analytical models and the 
physical structures will be necessary. 
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